Полиформа

Полиформа

14.12.2020


Полиформа — плоская или пространственная геометрическая фигура, образованная путём соединения одинаковых ячеек — многоугольников или многогранников. Обычно ячейка представляет собой выпуклый многоугольник, способный замостить плоскость — например, квадрат или правильный треугольник. Некоторые виды полиформ имеют свои названия; например, полиформа, состоящая из равносторонних треугольников — полиамонд.

Первыми полиформами, использованными в занимательной математике, стали полимино — связные фигуры, состоящие из клеток бесконечной шахматной доски. Название «полимино» было придумано Соломоном Голомбом в 1953 году и популяризировано Мартином Гарднером.

Полиформа, состоящая из n ячеек, может обозначаться как n-форма. Для указания числа ячеек в фигуре используются стандартные греческие и латинские приставки моно-, до-, три-, тетра-, пента-, гекса- и т. д.

Правила соединения

Правила соединения ячеек могут быть различными и должны быть указаны в конкретном случае. Обычно принимаются следующие правила:

  • Ячейки полиформы не должны перекрываться.
  • Две соседние многоугольные (многогранные) ячейки должны иметь общее ребро (для трёхмерных полиформ - общую грань).
    • Если допустить, что соседние ячейки могут иметь лишь общий угол (на плоскости) или общие ребро или вершину (в пространстве), то полиформа называется псевдополиформой (англ. pseudopolyform, pseudo-n-form).
    • Полиформа, состоящая из произвольных не обязательно связанных между собой ячеек на плоскости или в пространстве, называется квазиполиформой (англ. quasipolyform, quasi-n-form).

Симметрии

В зависимости от того, разрешены ли вращения и зеркальные отражения, различаются следующие типы полиформ:

  • свободная (англ. free) или двусторонняя (англ. two-sided) полиформа — фигура, которую разрешено вращать и зеркально отображать;
  • односторонняя (англ. one-sided) полиформа — плоская фигура, которую разрешено только вращать в плоскости, но нельзя переворачивать;
  • фиксированная (англ. fixed) полиформа — фигура, которую не разрешено ни зеркально отображать, ни вращать.

Виды и применение полиформ

Полиформы могут использоваться в играх, головоломках, моделях. Одной из основных комбинаторных проблем, связанной с полиформами, является перечисление полиформ заданного вида. Другой задачей является укладка фигур из заданного набора (часто это всевозможные полиформы определённого вида, например, 12 пентамино) в заданную область (в случае пентамино это может быть прямоугольник 6×10).

Среди популярных головоломок и игр, основанных на полиформах — пентамино, кубики сома, тетрис, некоторые варианты судоку.

Полиформы на гиперболических паркетах

На евклидовой плоскости существует лишь три правильных паркета — квадратный паркет, треугольный паркет и шестиугольный паркет. На этих трёх паркетах размещаются три наиболее «популярных» типа полиформ — полимино, полиамонды и полигексы соответственно.

На гиперболической плоскости существует бесконечное множество правильных паркетов, каждому из которых соответствует по меньшей мере один тип полиформ. На паркетах, в каждой вершине которых сходятся три многоугольника, существует один тип полиформ — объединения многоугольников, соединённых сторонами. На паркетах с четырьмя и более многоугольниками, сходящимися в вершине, можно рассматривать также аналоги псевдополимино — фигуры, образующиеся при соединении вершин многоугольников.

Сведения о количестве «гиперболических» полиформ и составлении из них фигур немногочисленны. Так, на квадратном паркете порядка 5 существует 1 мономино, 1 домино, 2 тримино (они совпадают с «евклидовыми» мономино, домино и тримино), 5 тетрамино. На правильном семиугольном паркете порядка 3 существует 10 тетрагептов — фигур, состоящих из четырёх связанных семиугольников, причём 7 из этих 10 тетрагептов можно уложить на евклидовой плоскости без перекрытия семиугольников.